Package: ThresholdROC 2.9.4

ThresholdROC: Optimum Threshold Estimation

Functions that provide point and interval estimations of optimum thresholds for continuous diagnostic tests. The methodology used is based on minimizing an overall cost function in the two- and three-state settings. We also provide functions for sample size determination and estimation of diagnostic accuracy measures. We also include graphical tools. The statistical methodology used here can be found in Perez-Jaume et al (2017) <doi:10.18637/jss.v082.i04> and in Skaltsa et al (2010, 2012) <doi:10.1002/bimj.200900294>, <doi:10.1002/sim.4369>.

Authors:Sara Perez-Jaume [aut, cre], Natalia Pallares [aut], Konstantina Skaltsa [aut]

ThresholdROC_2.9.4.tar.gz
ThresholdROC_2.9.4.zip(r-4.5)ThresholdROC_2.9.4.zip(r-4.4)ThresholdROC_2.9.4.zip(r-4.3)
ThresholdROC_2.9.4.tgz(r-4.5-any)ThresholdROC_2.9.4.tgz(r-4.4-any)ThresholdROC_2.9.4.tgz(r-4.3-any)
ThresholdROC_2.9.4.tar.gz(r-4.5-noble)ThresholdROC_2.9.4.tar.gz(r-4.4-noble)
ThresholdROC_2.9.4.tgz(r-4.4-emscripten)ThresholdROC_2.9.4.tgz(r-4.3-emscripten)
ThresholdROC.pdf |ThresholdROC.html
ThresholdROC/json (API)

# Install 'ThresholdROC' in R:
install.packages('ThresholdROC', repos = c('https://spjaume.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:
  • AD - Alzheimer's disease data
  • chemo - Response to chemotherapy data set

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.21 score 2 packages 27 scripts 417 downloads 9 exports 17 dependencies

Last updated 12 months agofrom:9392d56b1d. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 27 2025
R-4.5-winOKMar 27 2025
R-4.5-macOKMar 27 2025
R-4.5-linuxOKMar 27 2025
R-4.4-winOKMar 27 2025
R-4.4-macOKMar 27 2025
R-4.4-linuxOKMar 27 2025
R-4.3-winOKMar 27 2025
R-4.3-macOKMar 27 2025

Exports:diagnosticplotCostROCsecondDer2secondDer3SSthres2thres3thresTH2thresTH3

Dependencies:FNNkernlabKernSmoothkslatticeMASSMatrixmclustmgcvmulticoolmvtnormnlmenumDerivplyrpracmapROCRcpp